Continuum mechanics at nanoscale. A tool to study trees' watering and recovery

نویسنده

  • Henri Gouin
چکیده

The cohesion-tension theory expounds the crude sap ascent thanks to the negative pressure generated by evaporation of water from leaves. Nevertheless, trees pose multiple challenges and seem to live in unphysical conditions: the negative pressure increases cavitation; it is possible to obtain a water equilibrium between connected parts where one is at a positive pressure and the other one is at negative pressure; no theory is able to satisfactorily account for the refilling of vessels after embolism events. A theoretical form of our paper [49] in the Journal of Theoretical Biology is proposed together with new results: a continuum mechanics model of the disjoining pressure concept refers to the Derjaguin school of physical chemistry. A comparison between liquid behaviour both in tight-filled microtubes and in liquid thin-films is offered when the pressure is negative in liquid bulks and is positive in liquid thin-films and vapour bulks. In embolized xylem microtubes, when the air-vapour pocket pressure is greater than the air-vapour bulk pressure, a refilling flow occurs between the air-vapour domains to empty the air-vapour pockets although the liquid-bulk pressure remains negative. The model has a limit of validity taking the maximal size of trees into account. These results drop an inkling that the disjoining pressure is an efficient tool to study biological liquids in contact with substrates at a nanoscale range. PACS numbers: 68.65.k; 82.45.Mp; 87.10.+e; 87.15.Kg; 87.15.La ———————————————————————————————–

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study

It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...

متن کامل

Study of Aspect Ratio Effect on Mechanical Properties Polymer/NanoComposite

Carbon nanotubes (CNTs) demonstrate unusually high stiffness, strength and resilience, and are therefore an ideal reinforcing material for nanocomposites. However, much work has to be done before the potentials of CNT-based composites can be fully realized.  Evaluating the effective material properties of such nanoscale materials is a very difficult tasks.  Simulations using molecular dynamics ...

متن کامل

Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...

متن کامل

Evaluation of continuum damage at different temperatures for aluminum-silicon alloy of engine piston within low-cycle fatigue regime

In this article, the isothermal low-cycle fatigue continuum damage in the engine piston aluminum alloy has been evaluated at different temperatures. For this objective, experimental data of low-cycle fatigue tests on standard specimens were used at 280, 350 and 425°C. Based on the continuum damage mechanics method, the fatigue damage was calculated during cyclic loading. Obtained results, inclu...

متن کامل

Refined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model

In this article, the free vibration behavior of nanoscale FG rectangular plates is studied within the framework of the refined plate theory (RPT) and small-scale effects are taken into account. Using the nonlocal elasticity theory, the governing equations are derived for single-layered FG nanoplate. The Navier’s method is employed to obtain closed-form solutions for rectangular nanoplates assum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017